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Nonlinear partial difference equations are obtained which have as limiting forms the 
nonlinear Schrodinger, Korteweg-deVries and modified Korteweg-deVries equations. These 
difference equations have a number of special properties. They are constructed by methods 
related to the inverse scattering transform. They can be used as a basis for numerical schemes 
to the associated nonlinear evolution equations. Experiments have shown that they compare 
very favorably with other known numerical methods (papers II, III). In paper II, the 
Ablowitz-Ladik scheme for the nonlinear Schrodinger equation is compared to other known 
numerical schemes, and generally proved to be faster than all utilized finite difference schemes 
but somewhat slower than the finite Fourier (pseudospectral) methods. In paper III, a 
proposed scheme for the KortewegdeVries equation proved to be faster than both the finite 
difference and finite Fourier methods already considered. 

1. INTRODUCTION 

In recent years there has been rapid advancement in the study of physically 
interesting nonlinear problems. The progress in this field has, in part, been due to the 
synergetic approach [la, lb], which consists of the simultaneous use of conventional 
analysis and numerical experiments to investigate nonlinear phenomena. In this paper 
we derive a numerical scheme for the Korteweg-deVries (KdV) equation and the 
modified Korteweg-deVries (MKdV) equations based on the inverse scattering 
transform (IST). In papers II, III of this work, we show that the schemes compare 
favorably with other known methods. Before proceeding, it may be helpful to review 
some of the recent developments in this area. 

The inverse scattering transform (see, for example, a recent review of this subject 
by Ablowitz and Segur [3]) was first discovered by Gardner, Greene, Kruskal, and 
Miura [4, 51 in their study of the KdV equation. Subsequently, Lax [6] put the ideas 
in an alternative form which allows the method to be readily generalized. Zakharov 
and Shabat [7] found a new eigenvalue problem which led them to the solution of the 
nonlinear Schrodinger (NLS) equation. Ablowitz, Kaup, Newell and Segur [8] 
showed that a generalization of the Zakharov-Shabat eigenvalue problem allows one 
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to find the solution to a class of interesting evolution equations which, in addition to 
the above, includes the sine-Gordon, MKdV, self-induced transparency equations, etc. 

These ideas also apply to certain classes of nonlinear differential-difference 
equations. Using discrete scattering procedures developed by Case and Kac [9, IO], 
Flaschka [ 111 was able to solve the Toda lattice equations. Similar results were 
found by Manakov [ 121. Subsequently, Ablowitz and Ladik [ 131 presented a 
discretized version of the generalized Zakharov-Shabat eigenvalue problem which 
allowed them to isolate a class of differential-difference equations solvable by inverse 
scattering. 

Ablowitz and Ladik [ 14, 151 further generalized this theory to cover nonlinear 
partial-difference equations. They found a class of such equations and further 
introduced an equation which can be used as a numerical scheme for the NLS 
equation. It has the following advantages [ 161: (see also the following section) 

(i) This scheme maintains many of the important properties of the original 
problem. One can associate with this scheme an infinite set of conservation laws, just 
as in the case of the corresponding partial difference equation. This scheme has 
traveling wave solutions, with special properties, these are the solitons ([ 1,4, 51). 

(ii) The associated linear scheme is always neutrally stable. 

(iii) This scheme maintains a certain joint X, t symmetry of the original 
equation. 

(iv) The order of accuracy is the same for both the linear and nonlinear 
schemes. 

(v) This scheme depends globally on the mesh points, but it does suggest 
others which are local. 

These nice properties motivate us to look for a numerical scheme for the MKdV 
and the KdV equations in an analogous way. 

In the next section we review the procedure of finding the partial-difference 
equations together with the results for the NLS equation, which has already been 
discussed by Ablowitz and Ladik [ 161, We then develop and introduce a new scheme 
for the MKdV and the KdV equations based on the above theory. 

2. NONLINEAR PARTIAL DIFFERENCE EQUATIONS 

The key step in obtaining partial difference equations which can be solved by 
inverse scattering is to make an association between the nonlinear evolution equation 
and a linear eigenvalue (scattering) problem. In this discussion all the difference 
equations are related to the eigenvalue problem [ 13 ] (see [ 3, 131 for the continuous 
version): 

J%+ I =zV’;,+Q::V;l,+S::VZ,,, 

q+, =’ 
(2.1) 

7 vyn+R::vyn+ T::VYn+,, 
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where z is the eigenvalue and the potentials RT, QT, Sr, Tr are defined on the 
spacelike interval ) 111 < co and the timelike interval m > 0. The various evolution 
equations are distinguished by the associated time (m) dependence of the eigen- 
functions 

ArnVYn =A;(z) VY” + B;(z) vyn,, 

AmV;,, = C;(z) Vy,, + D;(z) VTn:,, 
(2.2) 

where AmVz = VK+ ’ - Vz (i = 1, 2). That is to say for each partial difference 
equation there corresponds a set of functions Al, BF, C:, 0: depending in general 
on the potentials. The equations for determining the sets A:,..., Dr, and hence the 
evolution equations are obtained by requiring the eigenvalue z to be invariant with 
respect to m and by forcing the consistency 

A”(E, V;) = E,(A” V:), i= 1,2, (2.3) 

where E, is the shift operator in the spatial coordinate defined by E,,Vz = I’:+, , 
i = 1,2. Performing the operations indicated in (2.3) results in four equations. 

For the special case associated with the NLS equation we let Rr = rQr*, 
S: = Tr = 0 (where Qz’ is the complex conjugate of QT and i refer to choices of 
multiplications in the usual sense), and the four equations are given by 

zA,A; = Q;+‘C; f By+, Q;*, 

-h+, 
Z 

-zB;+A;+,Q;-D;Q;+‘=AmQ;, 

1 
(2.4) 

zC;+, -- C; =F D;+lQ;* f A;Q;” = rA”Q;“, 
Z 

where A A” = Am -A:, etc. 
This &stern tin be solved in a deductive way. Using the ideas in [ 161, expansions 

in powers of z and l/z are sought. The series 

A; = i Azk’zzk, B; = i Bkk’zk, 
k=-I k=-I 

k#O (2.5) 

c; = $ cik’zk 3 0; = i Drk’zZk 
k=-I k---l 

k#O 

are substituted into (2.4) and the various powers of zk are set equal to zero. The coef- 
ficients of the finite power series (2.5) are assumed to be independent of z. One can 
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find each of the unknowns Ah-“, A:),..., Dh-” in terms of the potentials. The 
condition under which we can solve (2.4) requires that the potential evolve according 
to the evolution equation 

where /ir= (1 f Qrt’Qrt“ )/Cl f Q!fQI"> and f%’ = (Qkm+ , QT' + QZ'QTI ,I. 
The A!!’ are arbitrary constants of summation (lixed at n + -co) and D?“’ =A ?‘, 

i = 2, 0, -2. 
So by a suitable choice of the constants, one can obtain a martial difference 

equation which is consistent with the NLS equation 

kh=9.&k21q12q* 

In the linear limit if we want 

(2.7) 

iA”‘Qr = $ (Q;,‘, - 2Q;’ ’ + QK+: + Q5 1 -2Q,"+Q;-,I, 

where u = At/(Ax)2 and QF = Axq(n Ax, m At) = Axqy then the constants 
according to A ‘?’ = -i(a/2), A !” = iu, A ? 2, = - ia/2. This particular 
constants in (2.6) leads to evolution equation 

are chosen 
choice of 

i A”q:: 1 
At = 7 MY+ I - 

Wx) 
2q::+q~~,P,~,+q~,+,‘P,-2q::+‘+q~111) 

S, = ;: A%;, 
k=-cc kztra: 

ok” = q[Iq:: I + ST+ 1 qkm’, Ak” = (1 f qr+‘q;+” (Ax)~)/(~ f qkmq:‘W)2). 

This scheme is implicit and global. However, a local scheme is suggested in which 
P, = 1 and S, = 0 for all n. Equation (2.8), is consistent with the NLS equation 
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(2.7) with the truncation error of order O((dt)‘, (4~)~). Similarly the local scheme 
also has the same truncation error. 

For the special case associated with the MKdV equation 
R,T 6R2Rx+R,,,=0 (2.9) 

we let Ry = f QF, T: = Sz = 0, and the four equations are given by 

zA,,A; t R;B;+, f R;+‘C; = 0, (2.10) 

*AmR~+zB::fR::+‘D::=*A~+,R::+iB~+,, 
Z 

(2.11) 

1 
zC~+,--CC::+R~D~,,-R~~‘A::=A~R~, 

Z 
(2.12) 

‘A,,D;=R;“B;TR;C;,,. 
Z 

(2.13) 

Using the ideas in [ 13, 15, 161, the coefftcients in the equations for the time depen- 
dence of the eigenfunctions are expanded as 

A;=? ,,, z2kA Ok) B;= $ ,(2k-l,B’Zk-I’, 
n 

k=p2 k=pl 

c; = t ,(2k-l,B~kbl’, 0; = + 

(2.14) 
,ZkA(Zk) n . 

k=pl ki-2 

With the expanded form of AZ, Bz, CT, Dz, Eqs. (2.10), (2.11), (2.12), and (2.13) 
yield a sequence of twenty equations in eighteen unknowns corresponding to equating 
powers of z’, zP5, z4 ,..., 2, z-l, all of which must be independently satisfied. To solve 
these equations it is most convenient to solve the resultant equations correponding to 
zs and z-’ first, then solve the equations corresponding to z4, 1/z4, etc. Carrying out 
the algebra we find the values of A:‘,..., Dip4’ in terms of the potentials (see Taha 
[2]). The remaining two equations are consistent under the conditions 

Ati) = D(-i) - > i = 4, 2,0, -2, -4. (2.15) 

The following evolution equation is 

AmR::~R~t2A’4’-RR~:yn+1D(4’+R~+,Sn+, 

-R;,+; P,- [R;i:A!!‘-R;-2yn-2D(4’ tR;-t,‘S,-, 

-R;p,P,p, ] + R; 10:) f c [R;“+‘{R;“_+IA? 
/=-cc 

- Ry-“_,y,p,@? + R:-+,,‘S,-, - R;“_,P,_,} 

-R;“(R~+2A’4’-RR;“=,‘y,+,D’4’tR::,S,+I-R~~~’P,)]~ 
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-R;+' iA’o’ f y’ [Ry+‘{R;“_f,‘Af - R;L,y,-zD’j’ 
I - ,Zm 

+ Ry-+,‘S,p, - RF-,P,-,} - RTIRI:zA!!’ - R:+:‘y,+ ,D!“’ 

+R;:,SIt, -R~++,%ll~~ (2.16)j: 

where 

S =A’2’+A(4’F fD’4’ <’ 
n n 

j=-s 

[A!Y’E,i + D!;“Gi] vi) y,,, 

G,=r(R::+‘R~,+,‘-R~R~~,)y,.,6~+‘, 

E, = r(R;R;:,‘6;+’ -R,“+ , R;+“6;). (2.17) 

In the limit as m $ 1 + m, Eq. (2.16)+ becomes 

R.,=(A’4’-DD(4’)(Rn+2-R,~2)t (A%Df)(R,+, -R,m,) 

f (A’4’-D0(4’)]Rf,-,(R.+R.~2)-R~+,(Rn tR,,+,)-R:,(R,+,-R,m,)] 

f (A’!’ - 0”‘) R;(R,p, -R,,+ ,) 

+(A’4’--0(4’)RnlR.+,R.(R.+,R,+R.+,R.+z tR,R,,-,) 
-R,,Rn-,(R,R,-, +R,R,t, +R.-,R.-,)I. (2.18) 

Let R = Ax U, and by a proper choice (see below) of the constants and taking limit 
as Ax + 0 in Eq. (2.18) yield the MKdV equation 

u, F 6UZ u, t u,,, = 0. (2.19) 

From Eq. (2.16), let us consider the linear part which can be written as 

U~+‘-U~=(U~-U~+‘)A(O’t(U~+,-U~~;)A(2’ 

+ (U;-, - U;,‘,‘)D”‘t (U;+,- U;:;)AA’4’ 

+ (U;pz - U;,‘;) 0’“‘. (2.20) 
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To choose the constants, we require a scheme of order O((dt)*, (Ax)*), (expanding 
uy, , ) u::“,... in Taylor series). With this requirement we find 

‘4’2’ = -2@’ + ia = #-‘1, 

A (4) = LA (0) 
- 6- 

-&yD(-4) 
(2.21) 

where 

At 
a=oj 

and 

A ‘! = arbitrary constant. 

In order to get a local scheme of order O((At)*, (Ax)‘) for the MKdV equation 
from (2.16), , let Rr = Ax UF, keep the terms through order O((AX)~) and then drop 
the sum terms of the form 

and replace y, by 1. Equation (2.16)* gives the local scheme 

CT ;+I - u; = {(u;,, - u;T’:)A’4’ + (qy-, - u;,t;> 0’“’ 
+ (Uf,, - u;‘: )A?’ + (Uf_, - u;,‘,‘)D”’ + (q - U;+‘)A!!y 
f (Ax)* [(U;+‘[U;U;-, + U:-,U;+,] 

- u;[uyu;,i; + u;,‘:u;‘, ] + qyp;-, u;-, + u;uy-,] 
- u;+,[u;+‘u~~; + u~,‘;u;,‘:]}A!!’ 
+ {u;+,[upJ~~: + u;,,u~,+:] + upJ~u;,+: + u;,+:u;-,] 
- U;+‘[U;+‘Uf-* + lJ;,‘;u;-,] 
- U;_‘;[U;‘;U;-, + U;+‘U;p,]) 0’“’ 

+ {u!Ju::+‘[u;-, - u;,‘:] A?’ 

+ Kunm)* viz -(U;“)’ Ufp:_,] D”‘}], (2.22 J* 
where A (4) _ ,..., 0’“’ satisfy Eq. (2.21). Equation (2.22), is consistent with the MKdV 
equation (2.19), with the truncation error of order O((At)*, (Ax)‘). This truncation 
error holds also for the full scheme given in Eq. (2.16), . Since A!!’ is an arbitrary 
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constant, we have a family of schemes, each one of which satisfies the properties 
discussed earlier for the NLS equation scheme. 

For the special case associated with the KdV equation 

U,+6UU,+U,,,=O (2.23) 

we let Qr = Rf = 0, Tr = 1. The four compatibility equations for AZ,..., 0,” are 
given by 

A:+, A:: Z sp2; 

z--z l-q+'+ l-s;B::+l-Z(l-S;+') 1-s; 
mt1 s, -s; 

=z z(1 -qy)(l -sy> ’ 

s:: BZ+, B:: S mt1 

A:,, + -z 1-s;+ 
-n 0:: 

z(1 - s;> z(1 - s;> 2 (1 -sy> 
rnil s, -ST 

= z(1 - qy)(l - Sf) ’ 

Z 
C;+,+--f_D;+,-z 

A:: c:: 
1 -s; 1-S:: 1 -sy -z(l -sy’) 

(S y’ - s;> 
=z (1 -s;+‘)(l-sy 

(2.24) 

(2.25) 

(2.26) 

xt, s:: CT,, 0:: zB; 
z(1 - s;> +z (1 -s;> -z(l -sy>- (1 -ST+“) 

(2.27) 

Using the ideas in [ 13, 15, lb], the coefficients in the equations for the time 
dependence of the eigenfunctions are expanded as 

A;= ;- z2k,,j (2k) 

k?-2 
n 3 B;=t n, Z2kBC2k) 

k--2 
2 

cm = 7‘ ,2k@k’ 
n 

ki2 
n 3 D;=; n. 

(2.28) 
,2kD’2k’ 

k--2 

With the expanded form of A,“, Br, Cr, Dr, Eqs. (2.24), (2.25), (2.26), and (2.27) 
yield a sequence of twenty-four equations in twenty unknowns corresponding to 
equating powers of z’, z3, z, z-‘, z-‘, z-‘, all of which must be independently 
satisfied. Twenty equations of which give the values of the twenty unknowns (see 
Taha [2]). The remaining four equations, two of them are trivially satisfied and the 
third is satisfied under the consistency conditions 

A”‘= D”’ 
- 3 i = 4,2, 0, -2, -4. (2.29) 
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The fourth equation gives the evolution equation 

S:: IA!!‘- 
1-s; 2 

;’ 
,Lm I 

El,, + sy+‘w,(A’2’ + C,&,) 

1 1 Ill+1 
PE 

s, -s; 
+1-s; n+1- 1 -,;+l T n-2= (1 - S;+‘)(l -s;) ’ 

(2.30)* 

where 

E n = A’Z’S;W,-, - S ;+‘D(2’+H,+G,-S;+’ k Wk + Gk) 
k=-m 

n 

+S~Wn-,Cnp,-S~D’4’, C,=A?'t 2 ?iWj", 
j=-n 

T,=yn+,M,$S~t+:yn+,Z,-S~+,NNn+,, M,=S;+‘W,A”‘‘-S:D’j’, 

Hk=A(4)(S;+,yk-S;) Wkp,, G,=(S;-S:++,l)D!?, 

Fj=A’?‘(S,“+‘Wj-S,“_:‘W,p,)+D!!(S~.,-S,y+’), 

pj=A(4’(S,~+’ - Sjm, 1) Wj t DY’(S.j?fl’ - ST “yj), 

Qj = (S,“_i’ - Sj”) WjA’4’ - (S,J’- Iyj - Sj”) 0’“‘. (2.3 1) 

In the limit as m + 1 + m, Eq. (2.30)* becomes 

P n+,-S”~l)a+y{S,+,-SZ,+,-S,+,S,+,-S,S,+, ts;-, 

+S,~,S"~*-S,~*tSnSn~,}=~. 
n 

(2.32) 

where 
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and 

Let sy = 1 - &‘~‘~c;, and by a proper choice of the constants and taking limit as 
dx -+ 0 in Eq. (2.32) yields the KdV Eq. (2.23). 

To determine the constants in Eq. (2.30), we apply the same argument as in the 
MKdV equation case and it turns out that the constants have the same values as 
given in (2.2 1). 

In order to get a local scheme of order O((dt)‘, @lx)‘) for the KdV equation from 
Eq. (2.30), , we follow a similar procedure to that of the MKdV equation. We can 
establish 

S ; + ’ - S; = (S; - S;+ ‘) A’O’ + A’:‘(S;+, - S;‘;) + D’z’(S;~. , - Sf,‘,‘) 

+ A ‘?(S;+ 2 - S;:: ) + D’?(S:-, - S;::) 

+ [(S;)’ - (S; + ‘)‘I A’O’ + D”“(S;; ,‘(S;+ ’ + S;,i,’ + S;;++;)) 

- A!?(S;+ ,(S; + S;, , + S;, 2 )) - D’“‘{s:xy + s::~, + s:-2)} 

+ A’j’(S;+,‘(S;+’ + S;‘,’ + Srf,‘)} (2.33>, 

with 

S” = 1 _ pTP( ; 
,, 

Equation (2.33), is consistent with the KdV equation with truncation error of order 
O((dt)‘, (Ax)‘) as is the full scheme given in Eq. (2.30)*. 

As in the case of the MKdV equation, we have a family of schemes for the KdV 
equation and each one of them satisfies the properties given for the NLS equation 
scheme. 

It is worth mentioning that the partial difference equation for the KdV equation 
also can be deduced from the discrete Schrodinger equation 

with an assumed time dependence of the form 

and expanding $‘, B”f in powers of J. as 
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3. CONCLUSIONS 

The partial difference equations discussed here are consistent with certain 
important partial differential equations (NLS, MKdV, KdV). It can be shown that the 
solutions to the difference equations converge to the solutions of the corresponding 
partial differential equations. The partial difference equation maintains the joint x, t 
symmetry of the original partial differential equation. The partial difference equations 
suggest local schemes which still maintain the joint x, t symmetry of the original 
equation. 
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